luulen heh. the human cionnectome, sporns, tononi kötter. Nonetheless, anatomically distinct brain regions and inter-regional pathways represent perhaps the most feasible organizational level for compiling a first draft of the human connectome. Several neuroinformatics resources recording large-scale connection patterns in the cerebral cortex of various mammalian species already exist, for example, for most cortical regions of the macaque monkey [16,17,25], cat [26], and rat [27]. Computational analyses of these datasets have revealed a broad range of network characteristics [28], including the existence of clusters of brain regions [29], hierarchical organization [30,31], small-world attributes [32,33], distinct functional streams [34], motifs [35], and areal contributions to global network measures [36].The presence of significant interindividual variability in structural connection patterns, even at the macroscale level, and the fundamentally probabilistic nature of connectivity datasets provided in the connectome may be viewed as fundamental weaknesses of the proposal, undermining its comprehensive goal of a definitive structural description of the human brain. However, we should consider the fact that there is also clear interindividual variability in the human genome. Nevertheless, the first draft with a DNA sequence obtained from cells from only a few individuals [15] has proven immensely useful for gaining insights into general organizational features of the human genome. Mapping of interindividual variability in the connectome is a necessary further step, but does not detract from the potential insights gained from a first draft that does not yet systematically incorporate these differences.Step 1 is to perform diffusion-weighted imaging followed by probabilistic tractography of thalamocortical tracts as well as corticocortical interareal pathways, using correlations in connectivity profiles to assist in parcellating human cortical regions. The end result is a voxel-wise probabilistic all-to-all structural connectivity matrix for the human brain. Step 2 is to perform a correlation analysis of spatially registered, equally resolved resting activity and/or multistimulus/multitask activation data (functional magnetic resonance imaging and/or magnetoencephalography) recorded in the same person [73], emphasizing strong functional relationships that are consistent across tasks [74]. The end result is a voxel-wise all-to-all functional connectivity matrix for the human brain. Step 3 is to perform a cluster analysis of correspondences between the structural and functional connectivity matrix obtained under steps 1 and 2, with the goal of identifying regions of consistent structure–function relationships in the human brain, possibly involving indirect projections [75]. Step 4 is to compare the results obtained by cluster analysis (step 3) with macaque data in order to identify correspondences (e.g., in visuomotor pathways) and deviations (e.g., in structures such as the fasciculus arcuatus). Step 5 is to validate the strongest predictions generated by assembling the final combined structural–functional connectivity matrix using custom-designed stimuli and perturbational techniques such as transcranial magnetic stimulation.
Rheinmetall avasi Ukrainalle pääsyn suomalaisen ICEYEn satelliitteihin
-
Merkittävä osa ICEYEn tutkasatelliiteista on Ukrainan puolustusvoimien
jakamattomassa käytössä.
Artikkeli Rheinmetall avasi Ukrainalle pääsyn suomalaisen...
4 tuntia sitten